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Effects on Steroid MetabolismEffects on Steroid Metabolism
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Mechanistic Computational Steroidogenesis ModelMechanistic Computational Steroidogenesis Model

• Improve understanding of dose-
response behavior for EAC

• Help define mechanism of 
actions for poorly characterized 
chemicals 

• Serve as a basis to identify 
predictive biomarkers (patterns 
of steroid changes) indicative of 
exposure and adverse effects

• Support environmental human 
health and ecological risk 
assessments

• Help screen drug candidates 
based on steroid effect in early 
phase of drug development 
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Population Effects ModelPopulation Effects Model
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Endocrine Disruption in FishEndocrine Disruption in Fish

• Convincing evidence that 
fish are affected at 
individual and population 
levels

• Fish may serve as effective 
environmental sentinels for 
possible effects in other 
vertebrates

• Evolutionarily conserved 
HPG axis

Fathead minnow



ObjectiveObjective

Create a computational model of ovarian 
steroidogenesis and estimate parameters to 
predict synthesis and secretion of T and E2 
for in vitro baseline and fadrozole studies
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In Vitro Steroidogenesis Experiments: BaselineIn Vitro Steroidogenesis Experiments: Baseline

Small fish culture facility Fathead minnows

• Dissect fish ovary
• Incubate ovary in medium supplemented 

with cholesterol 
• Collect medium at six time points over  

31.5 hr
• Measure medium concentrations of 

testosterone (T) and estradiol (E2) using 
radioimmunoassay



In Vitro Steroidogenesis Experiments: In Vitro Steroidogenesis Experiments: FadrozoleFadrozole

Small fish culture facility Fathead minnows

• Dissect fish ovary
• Incubate ovary in medium supplemented 

with cholesterol and five fadrozole (FAD) 
concentrations

• Collect medium at 14.5 hr
• Measure medium concentrations of 

testosterone (T) and estradiol (E2) using 
radioimmunoassay
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Conceptual Steroidogenesis ModelConceptual Steroidogenesis Model

• 6 unique 
enzymes

• 12 enzymatic 
reactions

• 4 secreted 
steroids

Measured



Computational Steroidogenesis ModelComputational Steroidogenesis Model

• 6 transport  
rates

• 12 first-order 
enzymatic 
reaction rates

• 2 enzyme 
inhibition 
constants

Measured



Dynamic Mass BalancesDynamic Mass Balances
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Measured Steroids from Baseline StudyMeasured Steroids from Baseline Study

• Good evidence steroid synthesis is operating near steady-state during experiments
• Steady-state assumption reduces model complexity

R2 = 0.95

R2 = 0.84

R2 = 0.94

R2 = 0.98



SteadySteady--State AnalysisState Analysis
• Set differential equations in ovary to zero to yield 

algebraic equations
• Determined analytical solutions for testosterone 

(CT,med) and estradiol (CE2,med) in medium
• Solutions depend on 11 out of 20 parameters
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Parameter EstimationParameter Estimation
Cost  

function: 

• Applied a nonlinear iterative optimization algorithm

• Simultaneously estimated parameters using data from 
baseline and fadrozole-exposure studies

where:

( ) ( )
6 2 2, ,

T,med T,med FAD,med E2,med E2,med FAD,med
1 1

( ) ( ; , ) ( ; , )
dn

d i d d i d
i i

d i

J k C C t C k C C t C k
= =

= − + −∑∑
v v v

= measured testosterone for d th FAD dose at i th time

= model-predicted testosterone 

= measured estradiol for d th FAD dose at i th time

= model-predicted estradiol 

= measured fadrozole for d th FAD dose

,
T,med
d iC

FAD,med
dC

,
E2,med
d iC
T,medC

E2,medC

Model-Predicted Model-PredictedMeasuredMeasured



Estimated ParametersEstimated Parameters

First-order Enzyme Kinetics with Inhibition by Fadrozole

Ovary Uptake of Cholesterol and Fadrozole Secretion of Testosterone and Estradiol

FAD inhibition 
constants
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4671.198 }
Breen MS et al. Annals of Biomedical Engineering, 2007

pg ml-1 hr-1

Partition coefficient 
(dimensionless)

hr-1 

hr-1

hr-1

hr-1 

hr-1

hr-1

hr-1

pg ml-1

pg ml-1

* Literature values from  
fish experiments



OutlineOutline
• Effects of EAC on steroidogenesis
• Computational model of ovarian 

steroidogenesis to predict biochemical 
response for baseline and fadrozole studies
• In vitro steroidogenesis assay with ovary explants
• Ovarian steroidogenesis model with enzyme inhibition by 

fadrozole
• Steady-state analysis
• Estimation of parameters
• Assessment of model fit
• Sensitivity analysis

• Summary



Evaluation of Model Fit: Baseline StudyEvaluation of Model Fit: Baseline Study

Breen MS et al. Annals of Biomedical Engineering, 2007



FadrozoleFadrozole StudyStudy

Measured

• Expect E2 
to decrease 
with 
increasing 
FAD

• Expect T to 
increase 
with 
increasing 
FAD



Evaluation of Model Fit: Evaluation of Model Fit: FadrozoleFadrozole StudyStudy

Breen MS et al. Annals of Biomedical Engineering, 2007



ModelModel--based Experimental Designbased Experimental Design

Measurements in next experiment

Model-based 
Hypothesis:

T does not 
change with 

increasing FAD 
due to large 

secretion of AD 
into medium
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Sensitivity AnalysisSensitivity Analysis

Relative 
Sensitivities: 

• Analytically determined partial derivatives with respect to 
each parameter

• Evaluated relative sensitivities for control and each 
fadrozole dose 

where: = model-predicted testosterone 

= model-predicted estradiol 

= i th parameter
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Sensitivity AnalysisSensitivity Analysis

*

Estradiol

Testosterone

Dose-dependent sensitivity

Breen MS et al.
Ann. Biomed. Eng., 

2007 



Sensitivity AnalysisSensitivity Analysis

Measurements in next experiment
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SummarySummary
• Steroidogenesis model can predict T and E2 concentrations,    

in vitro, while reducing model complexity with steady-state 
assumption

• Sensitivity analysis indicates E1 pathway as preferred pathway 
for E2 synthesis

• Model and sensitivity analysis support hypothesis that T is 
unchanged with increasing FAD due to large secretion of AD 
into medium 

• Mechanistic model can help plan experiments and better 
understand dose-response behavior of chemicals that alter 
activity of steroidogenic enzymes

• This capability could help define mechanisms of action for 
poorly characterized chemicals in support of environmental risk 
assessments
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• Poster #3: Mechanistic Computational Model of Steroidogenesis in H295R 
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Integrated Systems Biology Approach to Link Mechanism of Action to 
Ecologically-Relevant Outcomes, Daniel Villeneuve
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